
NS9-19457 p A
/

TDA Progress Report 42-96 October - December 1988

Test Aspects of the JPL Vprbi Decoder Lp &a- -h’”r
/ / / C Y - scJe

;re + ,,,,’fd-

[$PL) V‘&V “ L s/i Un ive rs i t y of S o u t h e r n Ca l i fo rn ia , E lec t r i ca l Engineer ing , rJ +&.yw+4- / I

M. A. Breuer’

I P I I Viterbi
--.--%-high degree fl /:-A. tioned so that very few test vectors are required to test the entire chip. In addition, since

DJ’‘ several blocks of logic are replicated numerous times on this chip, test vectors need only
be generated for each block, rather than for the entire circuit. These unique blocks o f
logic have been identified and test sets generated for them. The approach employed for
testing was to use pseudo-exhaustive test vectors whenever feasible. That is, each cone o f
logic is tested exhaustively. Using this approach, no detailed logic design or fault model is
required. AI1 faults which modify the function of a block of combinational logic are
detected, such as all irredundant single and multiple stuck-at faults.

I)

1. Introduction
The Jet Propulsion Laboratory (JPL) is currently designing

a new Long Constraint Length VLSI Viterbi Decoder to be
used on many future NASA missions [l] . This decoder con-
sists of 8,192 Viterbi butterfly processors. A Viterbi decoder
processor IC contains 16 Viterbi butterfly processors, resulting
in over 20,000 gates per chip, with each individual butterfly
processor having a complexity of about 1,800 gates. To en-
hance testability, a scan architecture [2] has been used. In this
article we first discuss how the processor can be subdivided
into three major blocks. Then the test architecture of each
block is discussed along with the resulting test vectors required
to test each block. Modifications to the logic which will sim-
plify testing are also mentioned.

‘ T h e a u t h o r is a consu l tan t t o JPL’s C o m m u n i c a t i o n s Systems Research

Sect ion.

I I. Architecture
Figure 1 shows the hierarchical design schema of the Viterbi

decoder chip. Entities in ovals represent macros. Entities in
rectangles represent units of logic to be tested. such as gates.
flip flops, multiplexers, or full adders. A number in brackets,
such as [n] . indicates that there are n such entities. For exam-
ple, a VC (Viterbi chip) macro consists of one 16-BFLYS
macro and two MI macros. Table 1 indicates the gate-flip/flop
(F/F) complexity of the main logic blocks in this chip. Blocks
A-H are identified in Fig. 1. Assuming a flip flop consists of
about 10 gate equivalences, this chip consists of approximately
20,000 gates.

The test generation for the Viterbi chip is based upon the
analysis of three major blocks and related logic, namely the
Metric Computer, the Memory Interface, and the Add-Compare-
Select units. Each will be discussed in a separate section.

59

A cloud of logic is defined to be a combinational logic cir-
cuit all of whose outputs are either inputs to flip flops or are
primary outputs, and all of whose inputs are either primary
inputs or outputs of flip flops.

Note that a cloud of logic can be tested independently of
any other combinational logic. Also, if a cloud of logic is repli-
cated, then the tests for one cloud can be used to test all the
other replicated clouds.

A cone of logic is defined to be a single-output combina-
tional logic block whose output is either a primary output or
an input to a flip flop, and whose inputs are either primary
inputs or outputs of flip flops; every gate in the circuit which
has a path through combinational logic to the output is in the
cone.

A block of logic is said to be tested pseudo-exhaustively if
an exhaustive test set is applied to each cone of the block.

111. Metric Computer
The architecture of the Metric Computer is shown in Figs. 2

and 3. Because of the feedback introduced by the carry flip
flops, pipeline testing cannot be used. AI1 flip flops are part of
a scan chain. The combinational logic can be partitioned into
four major blocks, namely M C C l , MCC2, MC-C3, and MC-C4
(see Fig. 3). The last three consist of only a full adder, and
hence can be tested exhaustively with 8 test vectors. MC-C2
and MC-C3 have scan flip flops as drivers and receivers. MC-C4
has one primary input; the other 1/0 are scan flip flops.

MC-C1 has an architecture which can be decomposed into
3 clouds, as shown below.

I MC-C1

ID0
ID 1
sso
ss 1
SMO
SM 1

f/ Cloud 1
4

I Cloud2 t:
1 Cloud 3 tf

CARRY1
I I

MCCl has 7 X 3 = 21 inputs. To test MCCl exhaustively
would require 221 test vectors. However, each cloud has 7
inputs and can be tested exhaustively by 2' = 128 test vectors.
Due to the nature of the design, a pseudo-exhaustive test of
just 8 test vectors exists. The test-vector set for the cloud
shown in Fig. 4 is given in Table 2. The tests have been ordered

so that CO equals the next value of C, but this is not neces-
sary. Note that when SMO = 1, G1 is tested exhaustively; for
SMl = 1, G2 is tested exhaustively. Due to the fact that CO
implements a parity function, a sensitized path exists from GI
and G2 to a scan output. Thus, this test is a pseudo-exhaustive
test for this cloud.

In summary, the Metric Computer can be tested with just
8 test vectors. The test is carried out as follows. A test vector
is loaded into the scan flip flops. Simultaneously a test vector
is loaded into the BFLY-ID shift registers. These two test vec-
tors must be synchronized and aligned so that at time t , both
scan chains are loaded. Then a normal clock is issued and all
scan flip flops are loaded via their D input. The scan chain is
then scanned out and the data checked. There are many ways
for chaining flip flops to form a scan chain. The scan flip flops
in the 16 Metric Computers can be put into one scan chain and
then all Metric Computers can be tested as a unit by 8 test
vectors. One Metric Computer has 6 flip flops in the BFLY-ID
and 14 internal scan flip flops. The scan chain has 16 X 14 =
224 flip flops. Testing of the Metric Computers would take 8
t (224 X 8) = 1.800 clock cycles. The 8 comes from the 8
parallel-load clock cycles.

Figure 5 shows one possible scan path for this circuit.

Figure 6 indicates the BFLY-ID architecture. This circuit
consists of one 6-bit shift register (SR) per Metric Computer.
The 16 registers are connected together to form one long shift
register. Only D flip flops are used; they are not scan flip flops
and thus form what we refer to as a pseudo-scan chain.

IV. Memory Interface Unit
There are two Memory Interface (,MI) units. Each consists

of a 16-bit parallel load shift register, as shown in Fig. 7(a).
This unit both shifts and parallel loads as part of its normal
operation, hence it has a unique U R line, labeled LOAD. The
register is made up of scan flip flops; the D inputs are used for
parallel load; the scan-in for shfting data. This makes a double
scan chain unnecessary. The four MIS share a common reset,
clock, and load line. The parallel-in lines are driven by
SELECT 0 (31..16); SELECT 0 (15..0); SELECT 1 (31..16);
and SELECT 1 (lS..O). The first SIN line to the unit should
be tied to VDD or VSS. The RESET can be tested by loading
in a vector consisting of all ones, resetting the flip flops, and
scanning out the data and checking for all zeros.

The logic which drives each line is shown in Fig. 7(b) and
consists of a scan flip flop and a MUX. There are 32 of these
units. The architecture for the MI units and the logic which
drives these units is shown in Fig. 7(c). The scan chain for the
12P flip flops is not identical to that shown in this figure. The

60

MUXs and MI units are tested by shifting a test vector into the
register consisting of the 12P flip flops in the Compare-Select
logic (CSL). passing it through the MUXs into the MI units.
and shifting the data out of the MI units.

A 2 X 1 MUX is shown below.

A test for this device is shown below. S = 0 selects input 11;
S = 1 selects input 12.

S I1 I2

0 0 1 Select I1 and pass a 0
0 1 0 Select I1 and pass a 1
1 0 1 Select I2 and pass a 0
1 1 0 Select I2 and pass a 1

To test the parallel load of a flip flop a 0 and a 1 are loaded.
If the layout places lines close together in forming a register
and there are possibilities of shorts, then an MI register can be
loaded with the vectors 0101. . .01 and 1010. . .lo. To test a
shift register it is customary to pass a 0 and a 1. A pattern of
the form 01 100. . . is useful since it tests for the transitions 0
to 1 and 1 to 0, and the ability to hold a 0 and hold a 1.

The test vectors for this design are shown in Table 3. T1
loads zeros into the MI registers via the I1 input to all MUXs;
T2 loads ones into the MI registers via the I1 input to all
MUXs; T3 loads zeros via the I2 (FORCE) input to all MUXs;
and T4 loads ones via the I2 (FORCE) input to all MUXs.

To load the MI registers with a more complex test pattern
requires more test vectors. However, the test as proposed
appears to be sufficient because it indirectly checks for hold
and transition register operations; it does not test for shorts
between adjacent register cells.

Since the 12P flip flops in the CSL do not form a scan
chain, the bits in the test vectors must be distributed to the
correct flip flops in the actual scan chain.

The testing of the MI units and associated logic consists of
first scanning a test vector into the 12P flip flops of the 32
CSL units, next activating LOAD, FORCE. and FORCECTRL.
and then shifting out the results from MI. Note that the 12P

flip flops feed other logic and hence, later new data must be
loaded to test this other logic. Overlaying these two test vec-
tor sets may be possible.

V. Add Compare Select (ACS)
Part of the logic of an ACS unit is shown in Fig. 8. The

logic is driven primarily from flip flops 11P and 7P in the
BFLY unit, and 13P and 14P in the METCOMP. The basic
architectural structure is shown in Fig. 9. The logic in C2-ACS
can be partitioned into clouds; one such cloud is shown in
Fig. 10 along with the pseudo-exhaustive tests for this unit.

The testing of the MUXs 22P and 12P is straightforward,
since their outputs drive scan flip flops and their inputs are
either driven by primary inputs (CLOCK, WORD SYNC) or by
scan flip flops.

Note that the clock input to flip flop 11P is from a MUX.
During normal operation this clock is driven by the Q output
of flip flop 8P. During scan mode this line is driven by CLOCK.
Since the flip flops are edge triggered, a special test for this
logic is necessary. One test vector is shown below.

action
A * B* 8PQ l l P Q 1OP l l P Q

1 0 0 0 1 0 + 1

The scan chain is set up so that the conditions above are
met. Then a normal-mode clock is issued. 8PQ will be set
creating a 0 to 1 transition on the output of MUX 22P and set-
ting flip flop 1 IPQ. A scan operation is then used to check the
state of this flip flop. In a similar way a 0 can be loaded. No
transition on the gated clock line can be produced. These con-
ditions are summarized below.

action
A * B* 8PQ l l P Q 1OP l l P Q 8PQ

1 0 0 0 1 0 - 1 0 + 1
0 1 0 1 1 l + O 0 + 1
1 1 1 0 0 o + o l + O
0 0 1 1 0 1 + 1 1 - 0

Note that these tests can be executed in the same way that
other scan tests are executed, hence they are not really special.

A gate-level design of logic block C1-ACS is shown in Fig.
11 (a). Also shown is a functional test set consisting of 24 vec-
tors. The first block of vectors tests MUX 7P and establishes a
sensitized path through MUX 18P, NAND gate 4P, and finally
through MUX 13P. The next set of 4 vectors tests MUX 20P.
The next set of 8 vectors tests the MUXs feeding NAND gate

61

3P. The final set of vectors tests 4P and 3P. Testing the final
level of MUXs is done in a way such that all other MUXs are
tested at the same time. There is some redundancy in this test
set.

This circuit was processed using the USC Test Generation
System (TGS). The results are shown in the Appendix. Figure
A-1 shows the circuit description. which is an input to the pro-
gram. Figure A-2 shows the functional test set. Figure A-3
shows the test vectors generated automatically using the
PODEM algorithm. Only 16 test vectors are required to get
100 percent coverage of all single stuck-at faults. Figure A-4
shows the fault simulation results using the functional test
vector set. This set also produced 100 percent fault coverage.
However. 5 vectors can be deleted, reducing the test set to
19 vectors.

The discussion so far is incomplete since the ACS is not a

ter. Hence, when testing logic block C2-AC5, the results from
A* and B* can be latched into the input to shift registers 1P
and 9P. Then they can be shifted through these registers. The
result from either A * or B * , but not both, can then be gated
through MUXs 20P, 18P, and 13P into a scan flip flop SINK
(see Fig. 8). This gating requires FORCE = 0 or 1 , FORCE-
CTFU = 1, RENORM TRIGGER = WORD SYNC = 0 , K EQ
15 = 0, and ARITH CLOCK = 0 -+ 1.

I fully scannable circuit, i.e., it contains an embedded shift regis-

Another problem exists because of these embedded shift
registers. A test vector for logic block C1-ACS requires that
certain values be applied to lines AP and BP. But these are
outputs of the 16-bit shift registers. Hence, these values must
occur at A * and B* 16 time periods earlier. Thus, the flip flops
11P, 7P. 13P, 14P, and the carry flip flops f20P and f30P must
be set to proper values to produce the desired values of A * and
B*. A test for Cl-ACS consists of loading the scan chain with a
test vector to produce the desired values of A * and B*, issuing

, 16 more clocks to drive the data through the 16-bit shift regis-

ters, and then issuing one more normal clock to load the
result of the test into SINK. Then the scan chain can be read
out.

To alleviate these problems, the 16-bit shift register consist-
ing of 16 non-scan D flip flops can be modified to have the
design shown in Fig. 12. Here the first and last flip flops of the
shift register consist of scannable D flip flops. Now A * and B*
are observable as part of a normal scan chain. and AP and BP
are controllable as part of a normal scan chain. To test the
shift register. a 0 can be scanned into 17P. and 15 normal
clocks issued. The result in 20P can then be scanned out. This
can then be repeated for 17P set to 1. This test is a slight mod-
ification of the normal scan test schema. in which after a scan
operation, only one normal mode clock is issued.

VI. Conclusion
In this article it has been shown how the Viterbi decoder

chip can be partitioned into very simple blocks of logic and
test vectors generated for each such block. Most logic blocks
are tested exhaustively, hence any permanent irredundant fault
should be detected. It has also been indicated where normal
scan design rule violations appear, and ways for overcoming
these situations have been suggested.

It has not yet been determined how many scan chains
should be used, which flip flops should go into which scan
chains, and what the order of the flip flops in each scan chain
should be. A flat design needs to be obtained so that test
vectors for the entire scan chain can be determined. This will
require the development of several programs, such as a test-set
editor and a procedure to identify identical blocks of logic in
the circuit, where in most cases each such block is a cloud.
Testing parts of this circuit as a pipeline circuit is a possibility
which would permit replacement of many of the scan flip
flops by normal D flip flops.

Acknowledgment

The author would like to acknowledge Mr. Kuen-Jong Lee. whose efforts produced the
results shown in the Appendix.

References

[I] J . Statman, G. Zimmerman, F. Pollara, and 0. Collins, “A Long Constraint Length
VLSI Viterbi Decoder for the DSN,” TDA Progress Report 42-95, vol. July-Septem-
ber 1988, Jet Propulsion Laboratory, Pasadena, California, pp. 134-142, November
15,1988.

[2] 1. S. Hsu, “On Testing VLSI Chips for the Big Viterbi Decoder,” TDA ProgressRe-
port 42-96, this issue.

63

Table 1. Logic complexity

Hardware component count (inverters not counted) Totals

Block No. of units Gates MUX FA F/Fs Gates FlFs

A 144 0 0 1(5) 2 7 20 288
B 80 0 0 1(5) 2 400 160
C 16 0 0 0 6 0 96
D 64 0 0 0 16 0 1024
E 32 4 6(18) 0 3 704 96
F 16 2 1 0 4 48 64
G 2 0 0 0 16 0 32
H 16 30 0 0 1 480 16

2352 1176
- -

FA (full adder) = 5 gates
MUX (multiplexer) = 3 gates
EOR (exclusive or) = 4 gates

Table 2. Test for logic of Figure 4

FA

Inputs Outputs

* * * * * * A B C *
s s = = = Test 1 S I S

Vector D S D S G G M M G G C C
No. 0 0 1 1 1 2 0 1 7 8 + S O

1 0 1 0 1 0 0 0 0 0 0 0 a 0
2 1 0 0 0 0 1 1 1 0 1 0 1 0
3 0 0 1 0 1 0 1 1 1 0 0 1 0
4 0 0 0 0 1 1 1 1 1 1 0 0 1
5 0 0 0 0 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 0 1 0 1 0 1
7 1 1 1 1 1 1 0 1 0 1 1 0 1
8 0 1 0 1 0 0 1 1 0 0 1 1 0

Table 3. Test for MI units

Tests

1 2 3 4

12P 0 1 0 1
FORCE 1 0 1 0

FORCE CNTL 0 0 1 1

*Inputs

64

1

[l l lZBFLYS

2 1

4BFLYS I11 [21 BFLYSOFBFLYS -
1

[21 4BFLYS 4 4

t
6 '

RO

x 4) +

SMS SMO ... SM5

6

G

D2,F E2

4 + 4 = [161

H2

1 I l l 1

I

2

1 1

I
A + B [e41 COMPSEL [321

I I

I
1 2

11
----- + ----- H

BFLY-ID
6-BITSR

REGISTER LOGIC [l 6] - F A + 2 F/F FA + 2 F/F

A B C

I 1
MC-C2 MC-C3 MC-C4

3 3 R1

3
MC-C1 ,' 2 - 6 -
-

)BLACK BOX n n UNITS

=LOGIC [nl nUNlTS

Fig. 1. Hierarchical design of Viterbi Decoder chip.

(e) [641 -1 1321
E

Fig. 2. General RT structure of Metric Computer.

65

I 66

Fig. 4. One cloud in the Metric Computer.

67

...

68

INIT-BUS-IN (CHAIN) IN IT-BUS-OUT
INIT-CLK-IN (PI) 6-BITSHIFT REGISTER (CHAIN)

(PI) CLOCK ->
(PI) LOAD -

v

BFLY-ID <5 ._. O>

SER IAL-OUT
(PO) -

T/ R
n

(b)

PI BFLY-ID BFLY-ID ... BFLY-ID PO

1 2 16

Fig. 6. BFLY-ID scan-chain architecture in the Metric Computer: (a) D flip
flops forming a &bit shift register; and (b) 32 registers connected together to
form one long shift register.

12P ... -

(PI) FORCE

(a) PARALLEL-IN <15 ... 0)

I1

MUX
OUT - SELECT A/B*

12

EN2 I (PI) FORCE CTRL - NEN2

(HANGING) SIN

ILOAD = LOAD; ILOAD IS A PI

IRESET = RESET; IRESET IS A PI

FROM COMPARE -
SELECT LOGIC

1
RESET

1 12P (CSL) I
IC)

- + l L c -
1

FORCE ,' - I

FORCE
CTRL

Fig. 7. Memory Interface: (a) one memory-interface unit; (b) logic
driving a memory interface unit; and (c) architecture for 4 units.

69

. . . .

d
La

r-
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L

I

r
I
I
I
I
I

P I N

Z I .

E l C 0

E l : II

?3L

U
0

a

L > -
U
a
a
- - -

m

r I
8 +

m u

C

-+
n
N N

+

I

U
3-

a ..
I-

I I '

Y z a
d

4
f ,

Fig. 9. Basic architectural structure of an Add-Compare-Select unit.

c A' -
1 B'

--t c

C2-ACS C1-ACS

R

A1

61

c 1

(b)

A1 61 C1 A2 62 C2

1 0 0 0 1
1 0 1 1 0 0
1 1 0 1 0 1

T8 1 1 1 1 1

-
- - 1 s1

A S

B + -t - c co

s1 52

0 1
1 0
1 1
0 1
1 0
0 1
0 0
1 0

2
A2 , A S

62 B +

c 2 C cor

Fig. 10. Logic block C2-ACS: (a) logic of a cloud and (b) test vec-
tors. Adders 1 and 2, and the EOR gate are tested exhaustively.

-t s2

PRECEDING PAGE BLANK NOT FILMED 73

c f

I

- - - - - - - - - , 1

I
I

4

I
L

7

I
I
I

_ _ _ - - -

c 5

a

ORIGINAL PAGE IS
OF porn QUALITY

74

... SIN SOUT = Q

Q

..

..
I 6P 20P

QI-JD v1496 Qt.
Clhl E n l I T - n

"1825 I I "
.. ..

75

Appendix

Test Generation System Results

This Appendix contains the results of using the TGS on the combinational logic in the
ACS unit. It consists of Figs. A-1 - A 4 .

TYPE
4 4
inpt
inpt
inpt
inpt
inpt
inpt
inpt
inpt
inpt
inpt
inpt
inpt
inpt

and
inv
and
or

and
inv
and
or

and
inv
and
or

and
inv
and
or

and
inv
and
or

and
inv
and
or

nand
nand

and
inv
and
or

bu f

-
NO. OF

NAME FAN-OUT

IP 2
9P 2
12P 2
a 2
b 2
keql5 2
renormtg 2
wordsync 2

2
2
2
2
2

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
2

1
1
1
0

0
-

NO. OF
FAN-IN

0
0
0
0
0
0
0
0
0
0
0
0
0

2
1
2
2

2
1
2
2

2
1
2
2

2
1
2
2

2
1
2
2

2
1
2
2

3
3

2
1
2
2

1

FAN-IN LIST
1P
12P
9P
91

1P
a
9P
94

93
b
96
97

IPP
12PP
9PP
91p

1PP
aP
9PP
94P

93P
bP
96P
97P

99
99P

4P
keq15
3P
911

3P

12P

914
92

a

915
95

b

916
98

12PP

914P
92P

aP

915P
95P

bP

g16P
98P
renormtg wordsync
renormtg wordsync

keq15

917
912

Fig. A-1. Circuit input description.

I 76

1111
12345 678 90123
100x1 111 xxxxx
010x1 111 xxxxx
101x1 111 xxxxx
011x1 111 xxxxx
10x00 111 xxxxx
01x00 111 xxxxx
10x10 111 xxxxx
01x10 111 xxxxx
xxxxx 011 100x1
xxxxx 011 010x1
xxxxx 011 101x1
xxxxx 011 011x1
xxxxx 011 10x00
xxxxx 011 01x00
xxxxx 011 10x10
xxxxx 011 01x10
lxlxl 111 xxxxx
Oxlxl 111 xxxxx
lxlxl 110 xxxxx
lxlxl 101 xxxxx
xxxxx 011 lxlxl
xxxxx 011 Oxlxl
xxxxx 010 lxlxl
xxxxx 001 lxlxl

1
2
3
4
5

6
7
8
9

10
1 1

12
13

1P

9P
12P
A
B

K E Q 15

R E N 0 RMTG

WORD S Y N C

1 PP
9PP
12PP
AP
BP

I

Fig. A-2. (a) Functional test vectors and (b) corre-
sponding column headings.

77

Please enter circuit file name: cfunc

MAIN MENU

0. Exit
1. Fault-collapsing
2. Test-generation
3. Fault-simulation
4. Logic-simulation
5. Integrated System

Please enter your choice: 5

Would you like to use the following default values?

Exiting Condition : fault coverage = 100%
In-order fault selection
Test Generation Method : PODEM

Please enter: [y/nl y

For the following file names, enter
<RETURN> to use default file name as shown in parentheses,

"/" to suppress file generation, or
enter the desired name.

Please enter file name for fault classes

Please enter file name for resulting test vectors.

please enter file name for fault list.

please enter file name for complete output result.

please enter file name for execution time.

(default name: cfunc.cls) :

(default name: cfunc.tst) :

(default name: cfunc.flt) :

(default name: cfunc.res) :

(default name: cfunc.tim) :

what value should it be assigned?
If there is any "x" (don't care) in the test vector,

1. always assign "1"
2. always assign "0"
3 . randomly assign "1" or "0"

Enter your seiection: 3
Enter the probability of assigning "1": 0 . 6

Please choose one option for fault collapsing:
Equivalence merging only (for circuits with feedback).
Equivalence as well as dominance merging.

1
2

Enter option: 2

**** Fault Collapsing OK! * * * *

Number of faults = 144

* * * Now enter the main loop ... * * *
Number of detected faults = 0
Current fault coverage is 0.00%

.

.
First selection iteration..

Vector[l] is
11101 11111 111
Number of detected faults = 29
Current fault coverage is 20.14% _ - - - - _ _ _ - - - _ _ _ _ - - _ - _ ~ ~ - _ _ _ -

11011 iiiio 100
Number of detected faults = 83
Current fault coverage is 57.64% .
vector[5] is
10010 11100 101
Number of detected faults = 90
Current fault coverage is 62.50% .
Vector[6] is
01110 11110 101
Number of detected faults = 97
Current fault coverage is 67.36%

vector171 is
_____________________---___--___-_-__----__--.

io100 iiiio 110
Number of detected faults = 109
Current fault coverage is 75.69%
__-__--.

Vector[8] is
11000 11111 101
Number of detected faults = 113
Current fault coverage is 78.47%

Vector[9] is
10110 01010 011
Number of detected faults = 117
Current fault coverage is 81.25%

Vector [101 is
10001 11110 011
Number of detected faults = 123
Current fault coverage is 85.42%

___________________._----__-_-____---_________

_____________________- - -___ - - -____- -____- - -___

.
Vector [111 is
10110 01111 011
Number of detected faults = 129
Current fault coveraqe is 89.58%

Vector [121 is
11101 01101 010
Number of detected faults = 132
Current fault coverage is 91.67%

Vector[l3] is
.

11010 iiiii ooo
Number of detected faults = 136
Current fault coverage is 94.44%

Vector [141 is
11001 10110 101
Number of detected faults = 139
Current fault coverage is 96.53%

Vector [151 is
01011 11011 100
Number of detected faults = 142
Current fault coverage is 98.61%

Vector [161 is
00011 01101 011
Number of detected faults = 144
Current fault coverage is 100.00% .
.

.

.

.

Total number of faults is 144.

144 faults have been detected by 16 test vectors.
The fault coverage is 100.0000 % .

.
vector[2] is
01111 11101 111
Number of detected faults = 5 8
Current fault coverage is 40.28%

Vector[3] is
10011 11100 110
Number of detected faults - 69
Current fault coverage is 47.92%

.

.

I

Fig. A-3. Results of automatic test-vector generation.

I

78
ORIGINAL PAGE IS
OF POOR QUALiTY

ORIGlNAL PAGE IS
OF POOR QUALITY

Please enter circuit fjle name: cfunc
Vector[6] is
01000 11110 111
Number of detected faults ~ 100
Current fault coverage is 69.44%

M A I N MENU

Vector[7] is
10110 11101 011
Number of detected faults = 103
Current fault coveraqe is 71.53%

1. Fault-collapsing
2 . Test-generation
3 . Fault-simulation ~~

4 . Logic-simulation
5. Integrated System

Please enter your choice: 5

Would you like to use the following default values?

Vector[B] is
01110 11101 101
Number of detected faults = 110
Current fault coverage is 76.39%

Exiting Condition : fault coverage = 100%
In-order fault selection
Test Generation Method : PODEM

VectorI91 is
01110 01110 011
Number of detected faults - 117
Current fault coverage is 81.25%

Please enter: [y/nl n

Which Test Generation method should be used7
1. PODEM
2 . Random Test Generation
3 . Test Vectors in a file

Enter your selection: 3

Which exiting condition do you wish to use 7
1. fault coverage
2. number of test vectors
3 . CPU time (not available)

Enter your selection: 1

Please enter the percentage fault coverage desired: 100

FUNCTIONAL TEST VECTORS

Vector[lOl is
10110 01101 011
Number of detected faults = 118
Current fault Coverage is 81.94%

Vector[ll] is
10011 01110 111
Number of detected faults = 120
Current fault coveraqe is 83.33%

__-- - - - -

Vector [121 is
00011 01101 111
Number of detected faults - 120
Current fault coverage is 83.33%

Vector[l3] is
10110 01110 000
Number of detected faults = 122
Current fault coverage is 84.72% Please enter input file name for test vectors

(RETURN) ~~- use default name: cfunc.int
Pnter:

For the following file names, enter
(RETURN) to use default file name as shown in parentheses,

"/" to suppress file generation, or
enter the desired name.

Please enter file name for fault classes.
(default name: cfunc.cls) : cfuncl.cls

Please enter file name for resulting test vectors.
(default name: cfunc.tst) : cfuncl.tst

Please enter file name for fault list.
(default name: cfunc.flt) : cfuncl.flt

Please enter file name for complete output result.
(default name: cfunc.res) : cfuncl.res

Please enter file name for execution time.
(default name: cfunc.tim) : cfuncl.tirn

If there is any "x" (don't care) in the input vector,
what value should it be assigned?

1. always assign "1"
2 . always assign "0"
3 . randomly assign "1" or "0"

Enter your selection: 3
Enter the probability of assigning "1": 0.6

Please choose one option for fault collapsing:

Enter option: 2

* * * * Fault Collapsing OK1 * * + f

Number of faults = 144

* * * Now enter the main loop . . . f f *

Number of detected faults = 0
Current fault coverage is 0.00%

Vectorll] is
10011 11101 111
Number of detected faults - 31
Current fault coverage is 21.53%

1 Equivalence merging only (for circuits with feedback)
2 Equivalence as well as dominance merging.

_ ~ ~ ~ ~ ~ ~ _

*Vector[l6] is
10110 01101 110
Number of detected faults = 133
Current fault coverage is 92.36%

Vector[ll] is
10111 11101 010
Nwnber of detected faults - 138
Current fault coverage is 95.83%

*Vector[l8] is
01111 11111 000
Number of detected faults - 138
Current fault coverage is 95.83%

Vector[ZO] is
11111 10101 010
Number of detected faults = 142
Current fault coveraqe is 98.61%

*Vector[21] is
01101 01110 111
Number of detected faults - 142
Current fault coverage is 98.61%

*Vector[22] is
11101 01101 101
Number of detected faults ~ 142
Current fault coverage is 98.61% Vector[2] is

01011 11111 011
Number of detected faults = 62
Current fault coverage is 43.06%

VectorI231 is
10000 01010 111
Number of detected faults - 143
Current fault coverage is 99.31%

Vector[24] is
11100 00110 101
Number of detected faults - 144
Current fault coverage is 100.00%

__-----.

t t t t t t t l t t * t * t t * t * * . ~ ~ ~ . ~ ~ * ~ ~ ~ * ~ , . * , ~ ~ ~ ~ . * " " . " ~ ~ " "

.
Total number of faults is 144.

1 4 4 faults have been detected by 24 test vectors.
The fault coverage is 100.0000 % .

* f f f t f f f f f f f f t f f f t t ~ f f ~ f . f ~ ~ ~ . . * * * * * * * . * * * * * * f * t f +

'These vectors can be deleted.

Vector[5] is
10100 11100 000
Number of detected faults - 88
Current fault coverage is 61.11%

Fig. A+. Results of fault simulation for functional test vectors.

79

